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Use of a Computer Scan to Prove Q( 2 + 2 ) 
and Q( 3 + 2 ) are Euclidean 

By Harvey Cohn* and Jesse Deutsch 

Abstract. The fields in the title are shown to be norm-Euclidean by a computer scan of the 
unit 4-cube representing coordinates of a field element translated by integers. The method is 
to subdivide this cube into sufficiently many small boxes so the norm is less than unity in each 
box, when referred to an appropriate "neighboring" integer. 

Let K be a number field, NFQ the norm from K to Q, and OK the algebraic 
integers in K. Then K is a Euclidean field for the norm if for all a E K there exists 

e E 9K such that for some constant 8, 

JNQ (4 - a) I < 8 <1. 

A computer scan is used to demonstrate that Q( 2 ? x ) and Q( 3 + V2) are 
Euclidean for the norm. Lenstra's tables (see [6] and [7]) show that there are just nine 
known totally real Euclidean fields of degree four over Q, while Godwin (see [4] and 
[5]) provides the proof. The two fields of the title were not previously known to be 
Euclidean for the norm. Apparently, totally real fields are somewhat more difficult 
to prove to be Euclidean than those with some complex embeddings. For further 
information on Euclidean fields including tables of those known to have this 
property, see Lenstra ([6] and [7]). 

For a fixed a E K and a variable O E CK, we define 

M(a) = min|NQ(- K )J. 

Then the Euclidean property of the field K is 
M(a) < 8 < 1. 

Since the estimates found here might be of interest for other fields,we write the 
general a as 

a = a + b_+(c + dVm) n?+ , a,b,c,dE Q. 
We also use a special submodule of 0, namely #, defined by 

=x +yV +(z + wV M) +?V , x,y,z,w E Z. 
Here ( is also written for convenience as (x, y, z, w). We can restrict a, b, c, d E 

[- 2 I4] because any other values can be reached by using t as a suitable " translation 
vector". It might have been hoped that 0 = 0 suffices (as in corresponding Euclidean 
cases such as Q(12) where a = a + b/2). This is not the case here, and the 
translation vectors 4 required for a are of some intrinsic interest. 
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The numerical evidence supports the following results: 
CONJECTURE I. For K = Q(F2 + ? ): 
(a) M(a) < 2 and the only translation vectors 4 used are 

0 = (0, 0, 0,0), +1 =(1, 0,0,0), +r= (0, ?+1, 0,0), 

2+? = (0,0, 1,0), ?C2 ?+W =(0,0,0, ?1). 

(b)If a+ 2- 2 + W2 + E, C9 thenM(a) <. 
(c) If a is not of the form V2i * 2 + V + V2_ + V242 + V + V2+ 
E' (E dK. then M(a) < 4 

CONJECTURE II. For K = Q(V3 + ? ) 
(a) M(a) < 2 and here we use the larger set of translation vectors (, namely 

0 = (0, 0, 0,0), +1 =(1, 0,0,0), r2 = (0, ? 1, 0,0), 

?3 +? = (0,0, ?1,0), ?2 3 + 4 = (0,0,0, ?1) 

and, in addition, 

?1 V=(_1, +1,0,0), ?1 + V3?+V2 =(1,0, 1,? 0), 

+1 + V2 3 + = (?1,0,0, ?1), ?V_ 3 + = (0, ?1, ?1,0) 

?V_ V27 V 3 ? 4V = (0 ?1 ,0 1), 
? 3 ?+ Vf ? V2 37 ?Vf = (0,0, ?1, 1), 

a total of 33 vectors, using independent + signs. 

(b) If a V2 (1 + V3 + ?V2 + ? E (KP then M(a) < 7/16. 

(c)If aisnotoftheformV C2(1 + F3 + C)+, + ?V + 3 ? V2 +?, 
G CPK.then M(a) < 7/16. 
In both cases we have the computational result that M(a) < .99 with sufficient 

accuracy to guarantee M(a) < 8 < 1. A preliminary evaluation at a grid of points of 
the form 

a + bV +(c + dx )n n+V , 

where a, b, c, d E {-.5, -.4, ... .4,.5), seems to confirm parts (b) and (c) of the 
conjectures. 

In proving the Euclidean character, we automatically demonstrate that the module 
A1 forms a unique factorization domain. Therefore A' = OK, the ring of integers in 
K (see Cohn [3]). 

The idea is to cut the four-dimensional cube into subboxes and demonstrate that 
the norm is < 8 < 1 on each box or on some algebraic integer translate of each box. 
It would be most agreeable if the maximum norm for each box (by "convexity") 
would occur at the corners only. This is not true, so we must find suitable functions 
to majorize the norm so the maximum can be tested principally at the corners. If the 
bound is not verified on a particular subbox, we cut it into 16 equal size subboxes 
and attempt to verify the bound again. Define for a, b, c, d E Q 

N(a,b,c,d) = NK(a + bV+(c + d4f) n + V ). 
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We put a bound for INI on each box by elementary inequalities only. Set k = Q(m) 
and note 

N(a, b, c, d ) =Nkk ( a + bSm + (c + d;m);n + Vm) 

= NQ(a2 ? mb2 - nc2 - nmd2 - 2ncd + x/'(2ab - c2- 2ncd - md2)) 

= L2 - mR2, 

where 

L=a2 + mb2 nc2-nmd2 - 2mcd, R = 2ab - C2- 2ncd - md2. 
To find a bound for the minimum and maximum of N over the cube 

[A1, A21 x [B1, B21 X [C1, C2] X [D1, D2] 

we will put upper and lower bounds on a2 + mb2, 2ab, nc2 + nmd2 + 2 mcd, 
C2 + 2ncd + md 2 individually and then bring them together as follows: Suppose 

M1 < a2 + mb2 < M2, M3< nc2 + nmd2 + 2mcd < M4, 

M-M4 < a2 + mb2 - nc2 - nmd2 - 2mcd < M2-M3, 

L 2<max((M2 - M3)2, (M1 -M4)). 

If M1 - M4 and M2 - M3 have opposite sign, then the minimum for L2 is zero. 
Otherwise, 

L2> min((M2 - M3)2, (M1 -M4) ). 

Bounds for R and N are obtained in a similar fashion. 
We split [- _, 1f into subcubes of sidelength I/q, q even, so that [A1, A2] x 

[B1, B2] is contained in a single quadrant of the AB plane. Hence to obtain the 
maximum and minimum of a2 + mb2 and 2ab we just evaluate the corner points of 
[A1, A2] X [B1, B2] nearest to and furthest from the orgin. 

Now consider the function 

g(c,d) = c2 + md2 + 2ncd on [C1,C2] x[D1,D2], 

ag/ac = 2c + 2nd, ag/ad = 2nc + 2md, 

=2 2n = 4(mr-n2) 0 
2n 2rn 

so the only extreme point not on the boundary is (0, 0). However, we have rigged the 
boundary so that (0, 0) must in fact be one of the four corners of our square in CD 
space if it is in this square. For maxima and minima on the boundary of the square 
fix d = D1 or D2. Then ag/ac = 0 implies c = -nd, but (-nD1, D1), (-nD2, D2) are 
corner points of [Cl, C2] x [DI, D2] if they are in this box. Fix c = C1 or C2; then 
ag/ad = 0 implies d = (-n/m)c. Note g(c, -nc/m) = c2(1 - n2/Mr). The points 
(C1, -nCl/m), (C2, -nC2/m) may be in [C1, C2] x [D1, D2] but are not necessarily 
corner points. Hence for g(c, d) we must evaluate four corner points and at most 
two additional points. 

A similar argument for f(c, d) = nc2 + 2mcd + nmd2 shows we must check the 
four corner points and the following if they are in the box; 

(C1, -Cl/n), (C2, -C2/n), (-mD1/n, D1), (-mD2/n, D2). 
Note f(c, -c/n) = c2(n - m/n), f(-md/n, d) = d2(nm - m2/n). 
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Another technique based on the same general idea of scanning subcubes is to use 
the inequality of arithmetic and geometric means, 

IAB I< '(A2+ B2), A, B E R. 

Let K = Q(n + 1 ), and k = Q(F4H); then 

N(a,b,c,d) = H (a + b ? +(c + dm) n ~+V') 
aE Gal(K/Q) 

= NkK( a + b vm- + ( c + d4m) Vn + 4 )_ 

NKk (a-bV + (c-dV4) ln?-V ), 

NkK(a + bV+(c + dx )V n?V) 

=|(a + b;m+ (c + dvlm)Vn + rm )(a + brm- (c + dl;-);4) 

< a2 + mb2+ nc2 + nmd2 + 2mcd + rm (2ab + 2ncd? c2 + mdc2). 

Similarly, 

NK(a - bx +(c -cdi )n-b Y) | < a2 +mb2?+ nc2 + nmd2+ 2mcd 

-Vm(2ab + 2ncd + c2 + md2). 

Hence INI < L2 -mR'2, where 

Li = a2 + mb2 + nc2 + nmd2 + 2mcd, 
R' = 2ab + 2ncd + c2 + md2. 

Hence 

max| N I < max L,2_m min R'2, 

where the maxima and minima are taken over the box in question. As a 2L'/aa2 
a2L'/ab2, a2L'/ac2, a2L'/ad2 are greater than or equal to zero we conclude by 
convexity that the maximum of L' must occur at a corner of the four-dimensional 
box. Note f (c, d ) is positive semidefinite. The minimum for R' can be obtained in a 
fashion similar to the previous technique. 

Our algorithm checked to see if a box of sidelength 1/10 satisfied INI < 8 < 1. If 
not, it was shifted by the translates listed in the conjectures to see if INI < 8 < 1 on 
the translated box. Boxes that failed the initial pass were cut into cubes of sidelength 
1/20 and checked. The algorithm stopped at sidelength 1/80 for both Q(T2 + r2 
and Q( 3 + V2). 

The programs used for proving M(a) < 8 < 1 were written in the WATFIV 
variant of FORTRAN and run on an IBM 3081 and 3033. For Q(13 + W2 ) total 
run time was 12.9 seconds to prove 8 = .99 held as a bound. For Q(h2 + V ) it 
took 1.28 seconds to show that all but one box of size (1/20)4 satisfied 8 = .99. The 
exception was [.45,.5] X [.45,.5] X [.45,.5] x [.35,.4]. Further calculations showed 
that the norm in the last case was less than .81. If the 33 translations similar to those 
in Conjecture II were used for the case Q(F2 + F2 ), 1.62 seconds sufficed to 
demonstrate the bound 8 = .99 with boxes of size (1/10)4. 
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The numerical evidence for the critical points of parts (b) and (c) of Conjectures I 
and II were produced by programs written in SNOBOL and run on the same 
computer system as the previous programs. For Q(F2 + V ) the program took over 
14 seconds and for Q(V3 ? V ) it took almost 17 seconds to calculate the norms of 

a + bV +(c + dV)n + V, a,b,c,d E {-.5,-.4,...,.5}. 

Actually it is very easily verified that our fields have class number one by 
Minkowski bounds. It is more difficult to do this for the next maximal real subfield 
of the cyclotomic field Q(G2.), namely 

K= Q(1/2 + r2 + ?V) 

(see Bauer [1]). Even so, numerical evidence (see Cohn [2]), however incomplete, 
seems to confirm the hypothesis that the sequence of fields Q(cos(27T/2t)) has class 
number either equal to one or fantastically high. One expects the critical point for K 

analogous to Conjecture I(b) to be 1 * 72 +? V 22?+ Vh+ . Therefore, 
there is reason to believe other cyclotomic fields, particularly K, may be Euclidean, 
but a corresponding scan seems to require a disproportionate effort in computer 
time and numerical analysis. 
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